High-intensity intermittent running performance in relation to age and maturation in highly-trained young soccer players

Martin Buchheit, Ben Simpson and Alberto Mendez-Villanueva,
Physiology Unit, Sport Science Department,
ASPIRE, Academy for Sports Excellence, Doha, Qatar.
High-intensity running during youth soccer games

- LIR: Low-intensity running
- HIR: High-intensity running
- VHIR: Very high-intensity running
- Sprinting

Distance covered (m):
- U13: 7497±196
- U14: 7956±128
- U15: 8026±143
- U16: 8436±156
- U17: 8448±135
- U18: 8254±118

Significant differences:
- a: significant difference vs. U14 (P<0.05)
- b: vs. U15
- c: vs. U16
- d: vs. U17
- e: vs. U18

Buchheit et al. IJSM 2010
Determinants of high-intensity running

Supramaximal intermittent performance (>19-21 km/h): a greater aerobic power (i.e., vVO2max) is responsible for an upward shift of the exercise intensity domain → decreased relative intensity → less fatigue (?)
Determinants of high-intensity running

Supramaximal intermittent performance:

- ↑ Anaerobic capacity / Anaerobic speed reserve (ASR) and the proportion of ASR used
- Inter-efforts recovery capacity
What is already known in youth?

• The younger, the more limited the anaerobic capacity and presumably, the smaller the ASR

• The younger, the better the inter-efforts recovery capacity *(Ratel 2006)*

• Q: How does this translate into supramaximal intermittent performance in highly trained young soccer players?

1. Smaller ASR in the younger \rightarrow worse performance than older?

2. Greater ability to recover in the younger \rightarrow better performance than older?
Purpose

• Examine supramaximal intermittent performance capacity in relation to age/maturation in highly-trained young soccer players
• Examine supramaximal intermittent performance capacity in relation to physical capacities, i.e., ASR, $v\text{VO}_2\text{max}$
Methods
Participants

- **27 U14**: 13.0±0.7 y; -3.1 to 0.3 y to/from APHV, 154.7±9.7 cm; 41.5±7.2 kg
- **19 U16**: 14.9±0.5 y; -0.1 to 2.0 y from APHV, 169.2±7.4 cm; 56.8±9.1 kg
- **16 U18**: 16.7±0.8 y; 1.0 to 2.9 y from APHV, 171.2±5.9 cm; 61.1±6.8 kg

14 hr/week in an elite academy
Testing

- Anthropometry / Peak Height Velocity
- 40-m sprint with 10-m split times
 → Maximal sprinting speed (best split)
Testing

2 Incremental track tests:

- Vam-Eval (continuous) \rightarrow Vvam-Eval \leftrightarrow $vV\text{O}_2\text{max}$
- 30-15 Intermittent Fitness test (no COD) \rightarrow V_{IFT} \leftrightarrow supramax. Int. perf

![Graph showing incremental track tests with markers indicating velocity and time]
30-15 Intermittent Fitness Test
Variables

- MSS – Vvam-Eval = ASR
- V_{IFT} - Vvam-Eval = Surpramaximal intermittent performance *per se* (SupINT)

\Rightarrow The higher SupINT, the better anaerobic capacity and/or recovery

- SupINT / ASR = recovery index?
Results
Vvam-Eval, MSS and ASR

- **MSS**
- **Vvam-Eval**

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Running Speed (km·h⁻¹)</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>U14</td>
<td>72 ±11%</td>
<td></td>
</tr>
<tr>
<td>U16</td>
<td>81 ±14%</td>
<td>***</td>
</tr>
<tr>
<td>U18</td>
<td>85 ±12%</td>
<td>***††</td>
</tr>
</tbody>
</table>

Significance levels:
- ***: p < 0.001
- ††: p < 0.01
Surpramaximal intermittent performance

\[V_{\text{FT}} \times V_{\text{Vam-Eval}} \times \% \]
% of ASR used

Running speed (km.h\(^{-1}\))

- **MSS**
- **Vvam-Eval**
- **VIFT**

<table>
<thead>
<tr>
<th></th>
<th>U14</th>
<th>U16</th>
<th>U18</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS</td>
<td>27 ±7%</td>
<td>24 ±7%</td>
<td>23 ±4%</td>
</tr>
<tr>
<td>Vvam-Eval</td>
<td>27 ±7%</td>
<td>24 ±7%</td>
<td>23 ±4%</td>
</tr>
<tr>
<td>VIFT</td>
<td></td>
<td>24 ±7%</td>
<td></td>
</tr>
</tbody>
</table>

* * *
Correlation coefficient (90% CI)

Relations with physical capacities and maturity

SupINT

Very large
Large
Moderate
Small
Small
Moderate
Large
Very large

*: adjusted for ASR
Conclusions

• The younger players use a greater proportion of their ASR to reach similar supramaximal intermittent performance levels than the older players
• Supramaximal intermittent capacity is therefore poorly affected by age; however, once adjusted for ASR, the less mature tend to perform better than their more mature counterparts
• This is consistent with the greater propensity of young individuals toward high-intensity activities (i.e., better inter-efforts recovery capacities, faster VO₂ kinetics) (Ratel 2006)
• For all players pooled together, Supramaximal intermittent performance is positively related to ASR, and negatively to Vfram-Eval → training load management? → training strategies?
Match running performance and physical capacity in youth football (soccer)

Martin Buchheit, Alberto Mendez-Villanueva, Ben Simpson and Pitre Bourdon

Sport Science Department, Physiology Unit, ASPIRE, Academy for Sports Excellence, Doha, Qatar.
martin.buchheit@aspire.qa